Wastewater Treatment Fundamentals II – Solids Handling and Support Systems

Chapter Summary and Time Allotments

Chapter Title	Learning Objectives	Completion CE Credits
Chapter 1 Introduction to Solids Handling	 Identify the different types of residuals generated during wastewater treatment and give general characteristics for each. List five objectives for solids handling. Estimate primary sludge production in both mass and volume. Calculate sludge volume reduction following thickening and/or dewatering. List and describe the four types of water present in sludge. Explain why dewatered sludge concentrations are limited. Determine which types of sludge are easiest and most difficult to thicken and dewater. Select an appropriate conditioning chemical. Conduct jar testing and apply results to full-scale operation. Interpret results from jar testing and time to filter tests. Summarize U.S. EPA Standards for the Use or Disposal of Sewer Sludge (40 CFR Part 503). 	0.6 CEUs
Chapter 2 Thickening	 List the main objectives of thickening. List the common types of thickening equipment used in a WRRF. Calculate process control variables including hydraulic loading rate and solids loading rate. Start up, operate, and shut down various thickening devices. Explain how thickening reduces electrical and operating costs at a WRRF. Understand how to troubleshoot and maintain various thickening devices. Review of what polymers are and why they are used in thickening and dewatering Explain the O&M basics for dry polymer and emulsion polymer systems. Understand how to determine polymer feed rates to optimize thickener performance. List safety risks to be aware of when working around thickening and polymer equipment. 	0.6 CEUs
Chapter 3 Aerobic Digestion	 List five objectives of aerobic digestion. List the different groups of bacteria likely to be present in aerobic digesters. Describe the different biological reactions that can take place in aerobic digesters. 	0.6 CEUs

	 Explain the concept of endogenous respiration. Compare and contrast the fate of ammonia in aerobic digesters and ATAD. Calculate process control variables including hydraulic detention time (HDT), solids retention time (SRT), volatile solids (VS) loading rate, and percent volatile solids reduction (%VSR). Collect process control samples, conduct testing, and evaluate results. Start up a new aerobic digester, place a digester into service, and remove a digester from service. Implement corrective actions to maintain pH and alkalinity within accepted limits. Troubleshoot common aerobic digestion process control and mechanical problems 	
Chapter 4 Anaerobic Digestion	 List five possible objectives of anaerobic digestion. List the different groups of bacteria likely to be present in anaerobic digesters. Explain the concept of fermentation. Describe the different biological reactions that can take place in anaerobic digesters. Explain why a constant feed rate is important in anaerobic digestion. Explain how temperature affects the performance of an anaerobic digester. Calculate process control variables including hydraulic detention time, solids retention time, volatile solids loading rate, volatile acid to alkalinity ratio, and percent volatile solids reduction. Collect process control samples, conduct testing, and evaluate results. Start up a new anaerobic digester, place a digester into service, and remove a digester from service. Implement corrective actions to maintain pH, alkalinity, and digester gas composition within accepted limits. Explain why digester supernatant recycle that goes back to the liquid treatment process must be monitored and managed. Determine when to stop feeding a secondary anaerobic digester. Troubleshoot common anaerobic digestion process 	0.6 CEUs
Chapter 5 Dewatering	 Explain the purpose of dewatering. Explain the advantages/disadvantages of mechanical dewatering versus air drying. List the common types of mechanical dewatering equipment used at water resource recovery facilities (WRRFs). Calculate process control variables including hydraulic loading and solids loading rates. Start up, operate, and shut down different types of dewatering systems. 	0.6 CEUs

		-
	 Explain how dewatering is required to meet regulatory requirements and how it increases disposal options, reduces hauling costs, and often reduces other disposal costs. Understand how to adjust polymer feed rates to optimize dewatering performance. Describe how to troubleshoot and maintain various types of mechanical dewatering systems and drying beds. Understand various common types of sludge conveyance equipment. Understand basics of sludge storage and hauling 	
	practices.	
Chapter 6 Electrical Fundamentals and Motors	 Define electricity and list at least two conducting and two insulating materials. Describe the relationship between electricity and magnetism. Compare and contrast electrical and hydraulic system operating variables. Use Ohm's Law and the Power Wheel to calculate voltage, resistance, current, and power for an electrical circuit. Calculate the cost to operate a piece of electrical equipment. Compare and contrast series and parallel electrical circuits. Compare and contrast direct versus alternating current. Explain how various types of electrical equipment work, including solenoids, transformers, and disconnects. Explain how different types of electrical motor name plate. Interpret information listed on an electrical motor name plate. Interpret electrical drawings and trace the path of power from the source to a piece of equipment. 	0.6 CEUs
Chapter 7	 List the main purposes for using pumps and lift stations. 	
Pumps and Lift Stations	 Define hydraulic terms and explain how they relate to pump operation. List the defining characteristics of different types of pumps. Select a pump type given information about the fluid or solids to be pumped and the application. Identify the components of different types of pumps and explain their function. Explain the fundamental principles (theory) behind the operation of different types of pumps. Calculate water, brake, and motor horsepower. Determine why a pump may be cavitating and plan a course of action to eliminate cavitation when it occurs. 	0.6 CEUs

	 Identify the best efficiency point and the preferred operating region of a pump. Use the pump affinity laws to calculate the new flow output, discharge head, amp draw, and brake horsepower for a centrifugal pump after changing either the impeller diameter or motor speed. Safely start up and operate different types of pumps. Perform basic maintenance and troubleshooting on different types of pumps. Identify lift station components. Start up and shut down a lift station. Perform basic maintenance and troubleshooting of lift stations. 	
Chapter 8	 Describe the purpose of aeration systems. 	
Aeration Systems	 Compare and contrast different types of aeration 	
	systems.	
	• Explain the various components in a diffused aeration	
	system.	
	 Describe the maintenance tasks required for different types of blowers and diffusers. 	
	 Explain the basic types of control strategies used on 	
	aeration systems.	
	Identify the basic components and operating principles	
	of mechanical aerators.	
	Describe the maintenance of common mechanical	
	aerators.Describe how hydraulic and solids loading	
	the relative importance of each.	0.6 CEUs
	• Explain how the maximum solids loading rate to a	
	secondary clarifier depends on sludge settling	
	characteristics.	
	• Collect process control samples, conduct testing, and evaluate results.	
	• Start up a new activated sludge process, place a basin	
	into service, or take one out of service.	
	Troubleshoot common activated sludge and secondary	
	clarifier process control and mechanical problems.	
	Discuss differences between different types of activated sludge processes (complete mix_step feed_exidation	
	ditch pureox etc.) Understand that they are all based	
	on the same underlying biological principles	
Chapter 9	Compare and contrast various types of flow	
Laboratory Procedures	measurement devices.	
	• Select the most appropriate type of flow measurement	
	device for a particular application.	
	Explain the purpose behind each type of quality control sample, including blanks, duplicates, replicates	
	standards, calibration standards, calibration verification	0.0 CLOS
	samples, spikes, and spike duplicates.	
	Select appropriate quality control samples based on	
	analyte, how the data will be used, and regulatory	
	requirements.	

	 Evaluate results from quality control samples to determine the most likely source of error in an analytical measurement. Explain Beer's Law and how it applies to testing with colorimeters and spectrophotometers. Apply fundamental principles of colorimeters and spectrophotometers to analyze samples for a wide variety of parameters including chemical oxygen demand and nutrients. Conduct the following analyses: pH alkalinity total solids and total volatile solids total suspended solids (TSS) and total volatile suspended solids biochemical oxygen demand (BOD) carbonaceous biochemical oxygen demand (CBOD) soluble BOD and CBOD Assess raw analytical data to determine whether to accept or reject results. 	
Chapter 10 Chemical Storage, Handling, and Feeding	 Identify the most common chemicals used in wastewater treatment and their purpose. Understand the steps in the chemical supply chain. Know how to safely off-load bulk chemicals. Understand why and what personal protective equipment (PPE) is required when working with chemicals. Discuss the dependence of reaction order on reactant concentration. Calculate a feed rate for a desired dose. Calculate the stoichiometric dose required given a balanced chemical equation. Explain the difference between neat, dry, and active chemicals. Calculate the mass of active chemical in neat chemical. Understand the equipment and operations and maintenance of chemical feed systems. 	0.6 CEUs
Final Exam	• Randomized 100 question final exam cover questions from each chapter. Must achieve a passing score of 70%.	Total Credits – 6.0 CEUs or 60 Hours